A fast algorithm for the linear canonical transform

نویسندگان

  • Rafael G. Campos
  • Jared Figueroa
چکیده

In recent years there has been a renewed interest in finding fast algorithms to compute accurately the linear canonical transform (LCT) of a given function. This is driven by the large number of applications of the LCT in optics and signal processing. The well-known integral transforms: Fourier, fractional Fourier, bilateral Laplace and Fresnel transforms are special cases of the LCT. In this paper we obtain an O(N logN) algorithm to compute the LCT by using a chirp-FFT-chirp transformation yielded by a convergent quadrature formula for the fractional Fourier transform. This formula gives a unitary discrete LCT in closed form. In the case of the fractional Fourier transform the algorithm computes this transform for arbitrary complex values inside the unitary circle and not only at the boundary. In the case of the ordinary Fourier transform the algorithm improves the output of the FFT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sampling Rate Conversion in the Discrete Linear Canonical Transform Domain

Sampling rate conversion (SRC) is one of important issues in modern sampling theory. It can be realized by up-sampling, filtering, and down-sampling operations, which need large complexity. Although some efficient algorithms have been presented to do the sampling rate conversion, they all need to compute the N-point original signal to obtain the up-sampling or the down-sampling signal in the tim...

متن کامل

Fast numerical algorithm for the linear canonical transform.

The linear canonical transform (LCT) describes the effect of any quadratic phase system (QPS) on an input optical wave field. Special cases of the LCT include the fractional Fourier transform (FRT), the Fourier transform (FT), and the Fresnel transform (FST) describing free-space propagation. Currently there are numerous efficient algorithms used (for purposes of numerical simulation in the are...

متن کامل

Fast linear canonical transforms.

The linear canonical transform provides a mathematical model of paraxial propagation though quadratic phase systems. We review the literature on numerical approximation of this transform, including discretization, sampling, and fast algorithms, and identify key results. We then propose a frequency-division fast linear canonical transform algorithm comparable to the Sande-Tukey fast Fourier tran...

متن کامل

Determining the order of minimal realization of descriptor systems without use of the Weierstrass canonical form

A common method to determine the order of minimal realization of a continuous linear time invariant descriptor system is to decompose it into slow and fast subsystems using the Weierstrass canonical form. The Weierstrass decomposition should be avoided because it is generally an ill-conditioned problem that requires many complex calculations especially for high-dimensional systems. The present ...

متن کامل

Fast and accurate algorithm for the computation of complex linear canonical transforms.

A fast and accurate algorithm is developed for the numerical computation of the family of complex linear canonical transforms (CLCTs), which represent the input-output relationship of complex quadratic-phase systems. Allowing the linear canonical transform parameters to be complex numbers makes it possible to represent paraxial optical systems that involve complex parameters. These include loss...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Signal Processing

دوره 91  شماره 

صفحات  -

تاریخ انتشار 2011